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ABSTRACT 

General expressions for apparent plate height are derived in terms of temporal 
and spatial average values of local plate height, solute capacity factor and mobile 
phase density. The general expressions are applied to the appropriate expressions for 
gas chromatography, liquid chromatography and supercritical fluid chromatography 
with open tubular and packed columns. For gas chromatography, the equations 
reduce to the equations presented earlier by Giddings. For liquid chromatography, 
the equations reduce to those for local plate height. Predicted results for supercritical 
fluid chromatography are compared to experimental results reported in the literature. 

INTRODUCTION 

The deleterious effect of large pressure gradients on column efficiency in 
chromatography with compressible mobile phase fluids has been a long-recognized 
problem. The effect is associated with the fact that, as a solute band traverses 
a chromatographic column, it experiences varying conditions of mobile phase pressure 
and velocity, and the apparent plate height at the outlet may be significantly greater 
than the local plate height at any point in the column. In near-ideal gas chromato- 
graphy (GC) (He or N2 mobile phase and pressures less than 10 atm) this effect may be 
measurable but it is never very great. Giddings ef al.’ provided the fundamental 
theoretical treatment of this effect for gas chromatography, showing that the effect was 
due entirely to expansion of the mobile phase fluid. They showed that, assuming ideal 
gas behavior, the ratio of apparent plate height to local plate height reaches 
a maximum value of 9/8 as the ratio of inlet to outlet pressures approaches infinity. In 
liquid chromatography (LC), the compressibility of the mobile phase is so small that 
the effect of pressure drop on column efficiency is negligible. 
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The situation for supercritical fluid chromatography (SFC) is quite different. 
Density gradients associated with large pressure drops may cause excessive band 
broadening, especially for strongly retained solutes. For example, in one study’ the 
peak widths for some aromatic hydrocarbons were 2-4 times greater for a packed 
column operated under a large density gradient (dp = 0.18 g/cm3) than for the same 
column operated under a smaller density gradient (dp = 0.06 g/cm3). This dependence 
of column efficiency on density gradients can place significant limits on the resolving 
power of packed columns when high density gradients are produced. There have been 
a few detailed studies of this effect in packed column SFC2,3 as well as in SFC with 
open tubular columns4*‘, but so far a rigorous theoretical treatment of the 
phenomenon has been lacking. It is our intention to provide such a treatment with this 
paper. 

Subsequent to the initial investigations by Giddings et al.‘, Gidding&’ 
developed the theory into a more general form represented by the relation 

A = L&@:)dz/u( l/us)dz]’ (1) 

where fi is the apparent plate height measured at the column outlet, L the column 
length, and H and u, are the local values of plate height and solute zone velocity, 
respectively. Under conditions of near-ideal gas chromatography, where the capacity 
factor is virtually constant, eqn. 1 can be evaluated as a function of the pressure drop6. 
If however the capacity factor varies with the position in the column, as is commonly 
the case in SFC, the situation is more complex. Capacity factor is not a simple function 
of pressure. Recent advances in retention theory suggest that mobile phase density (or 
more specifically, reduced density) is a fundamental property affecting retention in gas 
chromatography (GC), LC and SFCs. Moreover, Martire has recently derived 
general equations for the spatial and temporal density distribution functions, average 
densities and column profiles of the mobile phase fluid, as well as for the apparent 
capacity factors and column profiles of the solute components. It appears desirable 
then to rewrite eqn. 1 in terms of mobile phase density and density-dependent terms. 
Such an expression would be generally applicable to GC, LC and SFC, but would find 
its primary application in the area of SFC. 

FLOW-RELATED QUANTITIES IN SFC 

Because of the high compressibility and non-ideal behavior of supercritical 
fluids, careful definition of flow-rates and related quantities is extremely important to 
successful treatment of plate theory in SFC. Martire has presented a general 
treatment of spatial and temporal aspects of column parameters applicable to GC, LC 
and SFC. Here we extend that treatment primarily to provide the specific tools needed 
for treatment of plate height theory. Throughout the following discussion we shall 
assume isothermal conditions and constant mass flow-rate of the mobile phase during 
a given separation experiment. This is achieved in practice by maintaining fixed 
pressures at the inlet and outlet of the column. With these restrictions a steady-state 
condition will be achieved so that the mass flow-rate, rit, remains constant along the 
length of the column. Radial variations, which may be significant under certain 
conditions”, are ignored. 
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Superficial velocity andflow-rate 
The volumetric flow-rate, Q, which is commonly measured experimentally, is 

related to mass flow-rate ri? by the simple relation 

where p is the density of the mobile phase. Horvith and Lin” define the superficial 
velocity u. as 

ug = (l/&F 

where A is the cross-sectional area of the tube. This is the velocity calculated from the 
volumetric flow-rate assuming a tube with no packing. The superficial specific mass 
flow-rate is then 

F. = h/A 

F. is thus the mass flow-rate per unit area assuming no packing is present. It follows 
from the preceding equations that 

Fo = UOP 

Mobile zone (excluded) velocity and flow-rate 
The mobile zone, or excluded, velocity u, is 

where E, = V,/Vis the interparticle porosity and V, and Vare the interparticle volume 
and empty column volume, respectively. The excluded velocity is taken as the actual 
linear velocity along the column axis of the moving mobile phase between the particles, 
or the mobile zone. When microporous packings such as porous silica are used, the 
intraparticulate mobile phase is assumed to be stagnant. Likewise, the excluded 
specific mass flow-rate F, may be defined as 

and it follows that 

The solute velocity u, is related to the mobile zone velocity and zone capacity 
factor k” by the equation 

u, = u,/( 1 + k”) = Fe/( 1 + k”)~ 

where k” is the ratio of moles of solute in the stationary zone (stagnant mobile phase 
plus stationary phase) to moles of solute in the mobile zone (excluded mobile phase). 
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Mobile phase velocity and flow-rate 
The mobile phase velocity u,,,, which is the average linear velocity of a mobile 

phase molecule or of a fully permeating, unsorbed solute, is 

where .s, = (I’, + I’,)/ V is the total porosity and Vi is the intraparticle volume. This is 
the velocity which is typically measured experimentally. The corresponding mobile 
phase specific mass flow-rate F,,, is then 

F, = F&, = u,p 

and the solute velocity is 

u, = u,,,/( 1 + k’) = F&l + k’)p 

where k’ is the phase capacity factor, which is the ratio of moles of solute in the 
stationary phase to moles of solute in mobile phase. 

Reduced flow-rates 
In order to facilitate the use of reduced densities in the treatment which follows, 

two reduced mass flow-rate terms are introduced. The reduced superficial specific 
mass flow-rate FOR is defined 

FOR = Fol~ref = UOPR 

where Pref is the reference density of the mobile phase fluid, and pR = p/pref is the 
reduced density. In GC and LC, the mobile phase density at 1 bar or 1 atm is used as the 
reference density. In SFC, we shall use the critical density of the mobile phase fluid as 
the reference density. Likewise, the reduced excluded specific mass flow-rate I;,R is 
defined 

FOR = Felpref = u&R 

and the reduced mobile phase specific mass flow-rate F,,,R is 

FIIIR = Fmlprer = %pR 

For a column of fixed diameter and porosity, FOR, FeR and F,,,R are constant under 
isothermal, steady state conditions, and represent the linear velocity which the mobile 
phase or mobile zone would have at the specified mass flow-rate if it were at its 
reference density. 

Retention time for an unretained, excluded solute 
For a packed column, the mass of excluded mobile phase m, (that which is 

moving) is 

m, = Ve/e<p>= = eeV<p>= 



PLATE HEIGHT THEORY FOR GC, LC AND SFC 7 

where < p > I is the spatial average densityg. The time to elute one column volume t,, is 

1” = m,Jh = ~,V<p>.Jri? 

Incorporating the relations ri? = F,,A and FO = F&, we obtain 

t, = L<p>,IF, = L<P~>~/F~,, 

where L is the length of the column. 
For an open tubular column 

t, = V<p>,@ = L<p>.lI;b = L<pR>JFOR 

Average linear velocity 
In some cases the average linear velocity of the mobile phase may be impossible 

to measure experimentally due to lack of a suitable unretained solute. The above 
equations for t, allow for its calculation. For a packed column, the average excluded 
velocity <u, > is 

<u,> = LltU = inl(~,A<p>~) = F,/<p>= = FeR/<pR>z 

For an open tubular column, u = u. = a,, and 

<u> = riz/(A<p>.) = F,,/-c~>~ = FOR/<pR>r 

Noting that D,(p) = pD,(p), it can be shown that < ll~>~ = l/<p>,, and 

<u>~ = <F/p>, = F/</I>, 

Thus it is seen that the average velocity which is usually reported as L/t” is the temporal 
average velocity. 

Reduced velocity 
For efficiency studies involving packed columns, reduced velocity is best defined 

in terms of the excluded reduced velocity, v,, that is, 

ve = uedpl& 

where d,, is the particle diameter and D,,, is the diffusion coefficient of the solute in the 
mobile phase. Therefore, for a packed column, 

V, = FedpI = 1FeRdplhiDm) 

For an open-tubular column of diameter d,, 

v = udcl&, = Fo4lWM = Fodcl(Pr&n) 
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To the extent that the product of density times diffusion coefficient for gases and 
supercritical fluids is roughly constant”, so is then the reduced velocity also 
approximately constant. While this product is constant in gas mixtures at low 
pressures, some variation is observed at high pressures. Studies on the behavior of the 
ratio pD/p&, where the subscript 0 refers to low pressure values, show that at high 
pressures (in or near the supercritical region) the value of @/pa& changes in a fashion 
that is not accurately predicted by Enskog-Thorne theory for dense gas mixturesi3,14. 
The product of pD, for benzene and some alkylbenzenes in supercritical carbon 
dioxide’ 3 at 40°C is less than unity at low density (0.1 < p < 0.6 g/cm3) and increases 
to approximately unity at a CO2 density of about 0.6 g/cm3, above which it remains 
nearly constant. Similar behavior is observed for naphthalene under the same 
conditions”, with pD, changing from 0.00072 to 0.00097 g cm- 1 s- ’ for CO2 
densities from 0.28-0.60 g/cm3. Therefore the variation in reduced velocity with 
density can be significant at low densities. This variation notwithstanding, the 
assumption that v is constant can greatly simplify the equations for apparent plate 
height (vi& infia). The question of whether this assumption leads to significant errors 
will be addressed later in this paper. 

PLATE HEIGHT THEORY 

The fundamental theory for relating apparent plate height to local plate height 
for non-uniform columns has been developed by Giddings6v7. The apparent (not local) 
plate height at any point in the column is defined as fi = z(r 2/t2), where z is distance 
travelled, r is the standard deviation of the band in time units, and t is elapsed time. 
Normally fiis measured at the outlet, where L, z and t refer to column length, standard 
deviation of the eluting band and retention time, respectively. If the column is divided 
into infinitesimally small segments, the local plate height for each segment is Hi = 
LiTf’/tfy where Li is the length of the segment, Z: the contribution to variance within 
that segment, and ti the time required for the solute band to traverse that segment. 
Noting that the addition rules for ‘I: and t differ (r2 = Czf and t = Zti), Giddings 
showed that 

A = LCz~/(Cti)2 

and performing the appropriate transformations, obtained the general relation 
presented above in eqn. 1. 

Under usual conditions the column is assumed to be uniform with respect to tube 
diameter, stationary film thickness, particle diameter, packing structure and other 
stationary phase parameters. For compressible mobile phases, however, a pressure or 
density gradient is inevitably present, which results in variations in both the solute zone 
velocity and local plate height. As noted above, we desire the equivalent expression to 
eqn. 1 expressed in terms of density. 

We begin by recalling that u, = F/( 1 + k)p, where Fand k represent either Fe and 
k”, or F, and k’. Under isothermal conditions and constant mass flow-rate, eqn. 1 can 
therefore be written as 

L L 

Ei = L[ 
s 

H(l + k)2p2dz]/[ 
s 

(1 + k)pdz12 

0 0 

(2) 
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The variable terms in H can all be expressed as functions of mobile phase density. The 
final step then in achieving the desired equation requires a transformation of variable 
from z to p, for which we invoke the relation dz = D,(p)dp, where D,(p) = 
(p/rl)(6P/+)r is the spatial distribution function relating z and p for the mobile phase 
fluid9 (q, P and T represent viscosity, pressure and temperature, respectively). 
Dividing numerator and denominator in eqn. 2 by L2 = [sdz12, and substituting dz = 
D,(p)dp, we obtain 

A = <H(l + k)Zp2>Z/,<(1 + k)p>Z (3a) 

which is the desired expression, where, once again, k represents either k’ or k”, and the 
brackets < >Z represent the spatial average of the enclosed terms. An expression 
which is equivalent to eqn. 3a involving both temporal and spatial average quantities is 

fi = <H(l + k)2p>,/<1 + k>f<p>, W) 

which is arrived at by an alternative approach in the Appendix. 
Dividing eqns. 3a and 3b by d, (column diameter) or dp (particle diameter) yields 

the equivalent expressions for apparent reduced plate height 6, 

h = <h(l + k)2p2>,/<l + k)p>; (44 

and 

/; = <h(l + k)2p>t/<1 + k>:<p>, W) 

The significant contribution of these equations is that they provide a usable form 
of Giddings’ general expression which is directly applicable to GC, LC and SFC. 

APPLICATIONS AND DISCUSSION 

In the following discussion we will demonstrate how eqns. 3 and 4 may be used to 
predict the impact of solute zone velocity gradients in GC, LC and SFC. Because the 
most significant area of application is expected to be in SFC, that case will be treated in 
greatest detail. 

Plate height equations 
For chromatography with open tubular columns, the Golay equationI 

describes plate height exactly under conditions of laminar flow. For packed columns 
numerous variations of the van Deemter equation have been proposed”*‘7-‘g. For 
LC and SFC in columns packed with microparticulate porous silica stationary phases, 
we employ the equations developed by Knox and Scott17 and by Horvath and Lin”. 
For GC, in which the stationary phase is a distinct liquid phase on a solid support, we 
employ the coupled form of the equation proposed by Giddingslg. We shall refer to 
these as the Golay, Knox, Horvath-Lin and Giddings equations, respectively. These 
four equations may be written in general form as follows. 
The Golay equation: 

H = (AIF)f,(p) + I&% + C%(p) (54 
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The Knox (or simplified Horvath-Lin) equation: 

H = (A/F&f,(p) + Bdp4’V,“3f&) + Cd,2F,f,(p) 

11 

The Horvath-Lin equation: 

+ Cd,2&f&) + Dd;‘V:‘3f&) (5c) 

The Giddings equation: 

The factors A-D contain constant column parameters, while fi(p) contain terms which 
may show some dependence on mobile phase density, including D,, k, 4 (stationary 
phase film thickness) and D, (solute diffusion coefficient in the stationary phase). The 
expressions for the various parameters are given in Table I. Note in particular that the 
product D,p or D,p appears in each expression for fi(p). y, 1, rc, q, co, 8,4 and & are 
column constants as defined in refs. 7, 17 and 18 (see Symbols section). We have 
neglected terms involving adsorption kinetics. 

The terms in the Knox equation given in Table I represent a simplified form of 
the equation. The complete A term given by Knox and Scott is 

XY, + k’~sDsl&)~Dmlf’e 

where y,,, and ys are the obstruction factors to solute diffusion in the mobile and 
stationary phases. Likewise, the more general form of the C term is 

(J’&3O){k”/[(l + k”)2~&1) 

where D,, is the diffusion coefficient of the solute in the stationary zone, and is 
a complex function of k”, 4k, ys,, D,, ys and D,, where ysm is the obstruction factor in 
the stagnant mobile phase . ” If we assume that D,/Dm a 1, the A and C terms in the 
Knox equation simplify to the expressions given in Table I. This assumption is 
reasonable for GC, and probably for SFC, where diffusivities in the mobile phase are 
relatively large. In LC, where 0,/D,,, may be closer to unity”**‘, the more general form 
of the Knox equation may provide a better description of band spreading processes. 

At sufficiently low reduced velocities, which are of practical interest, the B term 
of the Horvath-Lin equation is simplified and the D term becomes negligiblels, so that 
the Horvath-Lin equation reduces to a form similar to the Knox equation, both 
represented by eqn. 5b. The A and B terms in the Knox and simplified Horvath-Lin 
equations are identical with the minor difference that Horvath and Lin have provided 
an explicit expression for the constant B. The major difference appears to be in the 
C term, given by the expressions 

Knox: (1/30ysndK)[k”/(l + k”>l’(l - 4K)Ve 
Horvath-Lin: 1~/304(1 + $)“I[(4 + k’ + 4k’M1 + k’PVe 
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The apparent difference between these terms arises from the definition of the 4 and & 
terms. Knox’s & = Vsm/ V,, whereas Horvath and Lin’s 4 = &, V,,/ V,,, where V,,, 
V,, and V, are the volumes of stagnant mobile phase, excluded mobile phase or 
mobile zone and total mobile phase, respectively. &, is the fraction of the stagnant 
mobile phase which is accessible to the solute. For a fully permeating solute (&.,, = l), 
& = 4/(1 + #), and given that” k” = (k’ + &J/(1 - &), it can be shown that 

[v/(1 + k”)l’(l - dk)/Ysmdk = [e/-%4(1 + 4121[(4 + k’ + 4k’)/(1 + k’)12 

The tortuosity factor used by Horvath and Lin is 0 = ci/Ysm, where ei is the intraparticle 
porosity’ ‘. Thus for the conditions, (1) the solute is fully permeating, and (2) D,/&, x 
0, the Knox equation is essentially identical to the simplified form of the Horvith-Lin 
equation, the C term differing only by the constant factor si. 

The corresponding expressions for apparent plate height are obtained by 
application of eqn. 3 or 4 to eqns. 5a-d for local plate height. We prefer to use the form 
involving temporal averages because certain chromatographic parameters, including 
capacity factor, are typically measured as temporal average quantities. 
For the Golay equation: 

fi = (lIG4M~I~)<g,(p) . fl(p)>r + WJ’<izd> . f,(p)>, + 

+ CF< gdp) . MP) > J (64 

The Knox (or simplified Horvath-Lin) equation: 

fi = WWK4Fe~ < gdp) f,(p) > t + W:‘3/F,“3) < g&) f,(p) > t + 

+ Cd,% <g&l f,(p) > tl (6b) 

The Horvith-Lin equation: 

fi = (lIG4){(M,) <g&) f,(p) > t + Bd, < gdpY[l + 4&J’efi(d)“31 ’ t + 

+ Cd;Fe < gdp) . f,(p) > t + Dd,?3F,2’3 <g&l . f,(p) > t} (64 

The Giddings equation: 

fi = (lIG4){(AIF,) <g&) . fl@)=-r + ~d,-=g&Y[l + ~/(~dpFefi(~))l >t + 

+ CF, < g&l . f-s(p) > t> (64 

where G4 = < 1 + k > f <p > z and g3(p) = (1 + k)2p. In general, k = k’ except in the 
Knox version of eqn. 6b, where k = k”. 

We will show that in many situations the above expressions can be greatly 
simplified to yield more familiar results. In near-ideal gas chromatography, k is nearly 
independent of density and may be treated as a constant. At high mobile phase 
densities, the product D,p is approximately constant. Finally, although there is 
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. 

evidence that high mobile phase densities may cause swelling of the stationary phase”, 
we shall assume that dr and D, remain constant for the purpose of generating 
approximate expressions for apparent plate height. 

Gas-liquid chromatography 
GC is most commonly performed under near-ideal conditions with inlet 

pressures not exceeding 5 atm and an outlet pressure at ambient atmospheric pressure. 
Based on a review of available data on diffusivity of moderately large organic solutes in 
gases such as He and NZ, Giddings” concluded that D,p remains constant at 
pressures up to about 20 atm, consistent with the prediction of Chapman-Enskog 
theory23. The capacity factor varies only slightly with mobile phase density at these 
low pressures. Data for isooctane and several other compounds on squalane show that 
for N2 as carrier gas at an inlet pressure of 5 bar and an outlet pressure of 1 bar, the 
variation in k’ from inlet to outlet is about 5% compared to a five-fold change in 
density24. With this rather small variation in k’, eqn. 3a may be approximated by 

Xi = ~Hp’>~/<p>: (7) 

which upon application to eqn. 5a or 5d, assuming that k’, d,, D, and D,p are constant, 
yields 

A = (<p2>J<p>t)(HL + HM) + C’F,<p>;’ (8) 

where HL and HM represent the longitudinal diffusion (A) term and mobile phase 
mixing (B) term, respectively, as they appear in eqns. 5a and 5d and C’ = Cf3(p)p, 
which is constant. For an ideal gas it can be shown that 

<p2>J<p>: = J4 ~(P)/[J;(P)I~ = (9/W4 - 1W2 - lW3 - II2 

and 
. 

l/ < P >I = J;(P) = (3~~2 - iw - ~MP,,,)-~ 

where r = P~P~~~, and, in general, J:(p) = (n/m)(r” - l)/(Y - 1). Noting that for an 
ideal gas pin/pout = PiJPo,t, eqn. 8 is identical to the expression reported by Giddings 
et al.‘. At higher pressures and with non-ideal carrier gases, where the variation in 
capacity factor can be quite large, it may be necessary to invoke eqn. 6. This situation is 
treated in the section on SFC. 

Liquid chromatography 
Because of the low compressibility of liquids, the case for liquid chromatography 

appears to be trivial, i.e., the large pressure drops which are common in high-perfor- 
mance liquid chromatography (HPLC) provide little if any contribution to band 
spreading. In this section we provide general arguments as to why this should be the 
case for HPLC with packed columns, and estimate the effect under extreme conditions. 

Under ordinary HPLC operating conditions with high-pressure pumps and 
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microparticulate packings, the inlet and outlet densities will differ no more than about 
5%, and under these circumstances9 

<P>t x <P>z x (Pin + Pod/2 (9 

Likewise, the capacity factor in LC is nearly independent of the operating pressure25. 
For the moment let us also assume that D,p is constant. Therefore eqn. 7 is 
appropriate, which when applied to eqn. 5 for columns with porous silica packings, 
yields 

fi w (<p”>J<p>:)H 

where Hrepresents the entire right-hand side of eqn. 5b or 5c. Now it can be shown that 

which, based on earlier observationsg, is approximately unity under normal LC 
conditions. Thus it appears that in LC the apparent plate height may be adequately 
described by the equation for local plate height using simple averages for density and 
related quantities. 

The conclusion just reached is in agreement with the observation that there has 
been no general concern raised about the effect of pressure drop on resolution in liquid 
chromatography. A further test of this conclusion is provided by evaluating the effect 
of pressure drop in an extreme situation. For this purpose we use published data for the 
elution of benzyl acetate in a mobile phase of 5% ethyl acetate in n-hexane in a 
25 x 0.46 cm I.D. column packed with silica gel (Partisil 10 with a 7.8 pm particle 
diameter) . 26 This solvent system was chosen by the authors of the cited study in part 
because of the relatively high compressibility of n-hexane, a property which should 
also contribute to gradient-induced band spreading. Based on data provided in 
Table II of ref. 26, this system would yield a flow-rate of approximately 25 ml/min at 
an inlet pressure of 40 MPa (400 bar). Assuming an interparticle porosity of 0.4 and 
based on pref = p,,,,, = 0.6603 g cm -3 for n-hexane (density at 1 bar, ignoring the 
presence of ethyl acetate) at 25°C this flow-rate corresponds to FeR = 6.52 cm s-l, 
which is equal to the excluded linear velocity at the outlet. The local and apparent plate 
heights under these conditions were estimated from the simplified Horvath-Lin 
version of eqns. 5b and 6b, respectively. This required the estimation of various 
pressure-dependent parameters as described below. For a more precise treatment of 
the pressure dependence of density and viscosity, the reader is referred to other 
published work’2,25. 

(1) Approximate expressions for the spatial and temporal distribution func- 
tions, which are D,(p) = (l/q)(pm16p/6P)i’ and D,(p) = (p/q)(p-‘6p/dP);‘, were 
obtained by assuming that viscosity and compressibility are independent of pressure, 
yielding D,(p) = p and D,(p) = p2, the same expressions as for an ideal gas. 

(2) The isothermal compressibility for n-hexane was assumed to remain 
constant at the handbook value27 of 1.67. 10e3 MPa-l, the value at 1 atm. In fact, the 
compressibility decreases by about 25% at 40 MPa. Our calculation would therefore 
predict a slightly greater change in density than would actually occur, which would in 
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turn exaggerate the effect of pressure drop on plate height. Defining the reference 
density Pref as the density at 1 bar, &,,,ur = 1, an inlet pressure of 40 MPa corresponds 

to PR,in = 1.0651, Or dpR = PR,in - pR,out = 0.0651. 
(3) The effect of density on capacity factor was estimated from the k’ vs. Pi” data 

provided in Table VI of ref. 26 and the isothermal compressibility of n-hexane, yielding 
the following relation for pressures from 0.1 to 40 MPa: 

k’ = k” - 2[0.00343 MPa-‘/(pm’Gp/GP)]& 
= k” - 4.11&R 

where k” = 1.526 is the value at 1 bar. The factor 0.00343 MPa- ’ is the slope for the 
dependence of k’ on Pi”. This factor is doubled because the average column pressure 
would be about one-half of Pi,. Thus the average column pressures studied in ref. 26 
never exceeded 20 MPa, and the above relation represents an extrapolation to 40 MPa. 
At an inlet pressure of 40 MPa, then, k’ = 1.295 at the inlet, and the column-averaged 
value is 1.410, which is consistent with the value of 1.389 calculated from the regression 
equation given by Katz et al. 26 . Note that the change in k’ from inlet to outlet is about 
18%. Katz et aLz6 attributed this to an increase in column temperature at higher 
pressures, even for a thermostated column. Thus one extreme is to assume that k 
remains constant throughout the column (i.e., it is independent of density), which 
would contribute nothing to gradient-induced band spreading. The other extreme, 
which we have adopted here, is to assume that the column is efficiently thermostated, 
and that the change in k’ is due to the density gradient in the column. The truth 
probably lies between these two extremes, so that our assumption again has the result 
of exaggerating the effect of pressure drop on band spreading. 

(4) The effect of mobile phase density on the diffusion coefficient (D,) of ethyl 
acetate was estimated from D, vs. P data28 to yield the expression 

D, = 02 - [2.14. lo-’ cm2 s-r Pa-‘/@-‘6p/6P)r]dpR 
= 0: - (1.28 . 1O-4)dp, 

where 0: = 3.097 . 10m5 cm2 s-r is the value at 1 bar. 
Based on the approximations outlined above, the spatial averages of the 

expressions in the equation obtained by application of eqn. 3a to eqn. 5b (i.e., the 
spatial average analogue to eqn. 6b) were evaluated by numerical integration to 
a precision of 1 part in 105, and a value for Z? was obtained for the conditions stated 
above (Pi” = 40 MPa) using the values of the column constants stated earlier. 
A corresponding value for local plate height was calculated from eqn. 5b using spatial 
average values for PR, k’ and D,, which are the simple average values that would be 
routinely observed or calculated. The resulting values were 8 = 7.274 10m3 cm and 
H = 7.256 . 10m3 cm, a difference of less than 0.3%. This calculation was based on 
rather extreme operating conditions; results for lower inlet pressures and flow-rates 
produced even smaller differences between fiand H. Thus the theory correctly predicts 
what is generally observed in practice, that for an LC column operated isothermally at 
a constant mass flow-rate, the effect of pressure drop on plate height is insignificant. 
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Supercritical fluid chromatography 
In SFC we commonly find significant variations in both solute capacity factor 

and mobile phase density, especially with packed columns, so it is here that eqns. 3 and 
4 should be most useful. While it is possible to generate rather large pressure drops in 
SFC with open tubular columns, the pressure drops under typical conditions are quite 
small, and the equations for apparent plate height essentially reduce to those for local 
plate height. Therefore we will focus our attention on results for packed columns. The 
effects of pressure drop in capillary SFC will be the subject of a future investigation. 

To evaluate the effects of solute velocity gradients in packed columns, we employ 
retention data for the elution of naphthalene at 40°C with COZ on porous silica 
(reversed-phase, Perisorb RP-8)29. A fit of In k’ vs. reduced density for the reported 
data yields the relation 

In k’ = 6.34 - 9.49~~ + 2.35~; 

Values of apparent plate height were calculated using the Horvith-Lin equation 
(eqn. 6c) and a BASIC program written in Microsoft QuickBASIC 4.0 on a personal 
computer. Not all of the parameters required for the calculation of plate height were 
known, so for the constant column parameters we chose the values suggested in ref. 18; 
E, = 0.4, y = 0.7,il = 2.5,1$ = 0.8,8 = 2,w = 2and1c = 1/15.Unlessotherwisenoted, 
all calculations correspond to CO1 mobile phase at 40°C with 15-cm column packed 
with porous silica with a particle diameter of 5 pm. Values of inlet and outlet densities 
coresponding to selected combinations of temporal average reduced density and 
reduced excluded mass flow-rate (FeR) were determined based on solutions to the 
integrated form of Darcy’s Law (eqn. A3, Appendix). Inlet and outlet pressures and 
values of q;1(8PR/8pR)T were calculated using the Jacobsen-Stewart modification of 
the Benedict-Webb-Rubin equation 30-32. The Kozeny-Carman equation was used to 
calculate specific permeability, and the Reynolds number at the outlet was not allowed 

-4 ! I 
0 0.2 0.4 0.6 0.6 10 

Density, g/cm3 

Fig. 1. Predicted effect of reduced velocity on efficiency at various average mobile phase densities for elution 
of naphthalene. Data calculated from eqn. 6c. Mobile phase: CO, at 40°C. Stationary phase: reversed-phase 
(octyl) porous silica, dp = 5 pm. Column: 15 x 0.46 cm I.D. Solute retention: In k’ = 6.34 - 9.49~~ + 
2.35~:. See text for other solute and stationary phase parameters. 

Fig. 2. Effect of mobile phase density on capacity factor for naphthalene and phenanthrene on 
reversed-phase (octyl) silica at 40°C. Data for naphthalene from van Wasen et aLz9. Data for phenanthrene 
is predicted using Martire-Boehm equations. 
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to exceed 20. Reduced values of viscosity, pressure and density were employed to 
simplify the numerical calculations. Diffusion coefficient data for naphthalene in CO2 
at 40°C from ref. 15 were fit to a second order polynomial to yield the relation 

Dm. lo4 cm’/s = 3.69 - 2.11~~ + 0.361~; 

Viscosity values were calculated from a fourth order polynomial fit to published 
data30*33. 

Predicted results for the effect of average operating density on efficiency with 
naphthalene as solute are shown in Fig. 1; selected data corresponding to these plots 
are presented in Table II. It is seen that the effect of pressure drop is most severe at low 
average column density. This is consistent with the experimental results of earlier 
studies2,34. This behavior is quite reasonable considering that at low densities dp/dP 
can be quite large, leading to large changes in density and significant expansion of the 
mobile phase. The effect of this expansion, ignoring effects on k’, is represented by 
<p>J <p> =. For the data shown in Table II, values of this ratio are largest at 
<pR> f = 1.20, but they are, in general, not large enough to induce effects of the 
magnitude shown in Fig. 1. Second, we note that the effect of density changes on 
capacity factor are greatest at low carrier density (Fig. 2). A result of the latter effect is 
that at < pR > f = 1.20, <k’ > f increases as v, increases due to the lower densities and 
therefore higher values of k’ experienced near the column outlet. The combined effects 
of mobile phase expansion, as measured by < p z=- ,/ < p > z, and the significant changes 
in capacity factor at low average carrier density, result in the very rapid rise in the h^ vs. 
v, curve beyond the optimum velocity at low average carrier densities. At < pR > t = 
1.40, the changes in the ratio < pR > ,/ < pR > Z and values of < k’ > f are significantly 
Smaller. For < pR > f = 1.60, where dp/dP iS relatively small, < pR > ,/ < pR > I M 1 .OO 
even at high velocities, and <k’ > f remains approximately equal to the value for 
constant density, so that the gradient-induced band broadening is negligible (Fig. 1). 

A family of curves similar to those in Fig. 1 has been reported for the elution of 
phenanthrene at 50°C at much higher average pressures2. We were able to reproduce 
this behavior at higher pressures also by (1) adjusting the parameters in our equations 
for capacity factor and diffusion coefficient to yield the values reported in ref. 2 for 
phenanthrene at 50°C and (2) using a particle size of 2 pm in a 15-cm column. One 
effect of raising the temperature is that the maximum compressibility of CO2 occurs at 
higher pressure. The smaller particle size results in a larger pressure drop. The 
combined effect (higher temperature, smaller particle size) is to induce significant 
changes in k’ at higher average operating pressures. Thus our equations are consistent 
with expected and observed behavior in this respect. 

To evaluate the effect of k’ on efficiency, we made an estimate of the parameters 
for phenanthrene in the equation 

ln k’ = ln k” - ap, + bp; 

where k” is the capacity factor under ideal GC conditions. Although the theory behind 
this equation strictly applies to absorption chromatography’, it should serve as 
a reasonable basis for estimating the effect of solute properties on coefficients a and b, 
since these are largely mobile phase parameters. Accordingly, estimates of a and b were 
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Fig. 3. Predicted effect of reduced velocity on efficiency at various average mobile phase densities for elution 
of phenanthrene. Ln k’ = 11 - 13.32pa + 3.30~:. Other conditions as in Fig. 1. 

Fig. 4. Predicted effect of solute on efficiency at <pR> = 1.2. Conditions as in Fig. 1. 

made by multiplying each by the ratio of the Van der Waals volume of phenanthrene to 
that of naphthalene, yielding a = 13.32 and b = 3.30. The value of In k” was then 
increased to 11, the smallest integral value for which the In k’ vs. PR curve for 
phenanthrene does not intersect that for naphthalene (Fig. 2). The diffusion coefficient 
for phenanthrene was estimated by applying a factor of 0.826 to the values for 
naphthalene, which is the ratio of D, values for phenanthrene to naphthalene at 
240 bar and 50°C’. Plots of k M. < v, >r are shown in Fig. 3, with corresponding data 
presented in Table III. Two aspects about these curves are immediately obvious. First 
is that, at a given average density, k for phenanthrene rises much more rapidly than it 
does for naphthalene (Fig. 4). This is expected because of the larger values of capacity 
factor. On the basis of the approximate expressions 

A % H<(l + k’)2p,:>Z/<(l + k’)PR>; = 

= ff<l + k’)2pR>t/(<l + kl>;<PR>z) (11) 

which we examine below, fi should increase with k’, since the expression has the form 
of the average of the square divided by the square of the average. This is consistent with 
the experimental results obtained by Schoenmakers and Uunk34, who observed much 
greater losses in efficiency with pressure drop for naphthalene (average k’ x 1.3) and 
biphenyl (average k’ w 1.1) than for ethylbenzene (average k’ x 0.3) under identical 
conditions. 

The second interesting aspect of the curves for phenanthrene in Fig. 3 is that, for 
large values of < v, > 1, they change in curvature, and even intersect one another. These 
results are predictions based on the model and remain to be verified experimentally. 

It is important to emphasize that the data presented in all of the tables and 
figures are based for the most part on models rather than experimental data, and as 
such depend on the assumptions made. This distinction is especially important with 
respect to the effect of solute size on mass transfer in the stationary phase. 
Experimental results2 have shown that, at high average densities where gradient- 
induced band spreading should be insignificant, the reduced plate height curve rises 
more rapidly for naphthalene than for phenanthrene at reduced velocities above the 
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optimum. This was attributed to a combination of factors involving the effects of 
solute size and capacity factor on the magnitude of the C term. These factors are not 
taken into account in the present treatment. 

We now investigate the possibility of simplifying eqn. 6c by assuming that D,pk, 
and therefore v, can be assumed to remain constant. This results in the attractively 
simple expression 

&;,,, = (G3/G4)[A/v, + B/(1 + ov; “3)] + (F2/G4)[Cv, + Dv,~‘~] (12) 

where F2 = < (4 + k’ + #‘)‘pR >t 
G3 = <(l + kl)‘p& 
G4 = <l + k’>:<p,>, 

The same treatment applied to eqn. 6b results in even simpler expressions. The ratios 
l/&,, and k/h,,, are listed in Tables II and III along with other parameters including 
G3/G4 and F2/G4. h,,, is a simple estimate of the reduced plate height calculated from 
the local plate height equation, using c k’ > f in place of k’, and < Dd, > f for D,p,. 
Thus i/h,,, is a measure of the overall effect of solute velocity gradients on efficiency. 
The data in Tables II and III show that &,, is a good approximation of 6 except for the 
combination of high velocities and low average density. Considering that the 
evaluation of /&,,, requires evaluation of spatial and temporal averages just as does k, 
there appears to be little advantage in utilizing this estimate in actual calculations. 
However, the expression for &,, may serve some purpose as an aid in understanding the 
impact of solute velocity gradients on the different band-broadening processes. 

Considering eqns. I1 and 12, and that the C and D terms in eqn. 12 should be 
significant only at high velocities, the ratio G3/G4 should provide a reasonable 
indicator of the onset of departure of 4 from the corresponding value assuming no 
density drop (fz,,,). In fact, we find that the departure of G3/G4 from unity parallels that 
of l;lh,,t, although the latter increases more rapidly. It is useful to note that as long as 
G3/G4 = 1 .OO, there is no significant loss of efficiency due to solute velocity gradients. 
The rapid increase in k/h,,, at higher velocities appears to be related to the relative 
values of the ratios G3/G4 and F2/G4. At low velocities, where only the A and B terms 
are important, k/h,,, x G3/G4. At higher velocities the C and D terms become 
significant, and these are multiplied by the ratio F2/G4. This ratio increases much 
more rapidly than does G3/G4, resulting in an additional increase in l/h,,. Another 
possible indicator of the loss of efficiency might be the ratio < PR > ,/ < PR > Z. In the 
absence of changes in k’ as in near-ideal GC, this would be the case (see eqn. 8). In SFC, 
however, the added effect of changes ink’ make this ratio a rather poor indicator of the 
onset of loss of resolution. Data for phenanthrene in Table III show that rather large 
values of k/h,,, are attained before < PR > ,/ c pR > Z increases appreciably. 

Upon further examination of the data for the naphthalene and phenanthrene 
models in Tables II and III, the outlet pressure appears to be a simple, reliable 
indicator of the onset of loss of efficiency, regardless of the average density. Loss of 
efficiency is experienced at P Out I 82 bar for the naphthalene model, and at PO,, < 
90 bar for the phenanthrene model. The use of outlet pressure or density as a guide to 
avoid loss of resolution has been noted earIier3*34. 

Figs. 5 and 6 show the effect of particle size for two columns operated at the same 
temporal average density and keeping all other parameters constant. Fig. 5 shows that 
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0 10 20 
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Fig. 5. Predicted effect of particle size on reduced plate height vs. reduced velocity curves for elution of 
naphthalene. .Other conditions as in Fig. 1. 

Fig. 6. Predicted effect of particle size on plate height vs. linear velocity curves for elution of naphthalene. 
Other conditions as in Fig. 1. 

at high reduced velocities the column packed with smaller particles loses efficiency 
much more rapidly than the column packed with larger particles. This is due to the 
larger pressure drop required to operate the column with smaller particles at the same 
reduced velocity. Fig. 6 shows the variation in actual plate height versus average linear 
velocity. At high linear velocity, the column packed with larger particles becomes more 
efficient, suggesting that for fast separations it may be desirable to use larger diameter 
particles. These effects have also been observed experimentally3*34. 

CONCLUSIONS 

We have presented a rigorous treatment which accounts for the effect of pressure 
drop on efficiency in column chromatography for steady state, isothermal operation, 
and have shown that the results predicted by theory agree in general with experiment. 
The band broadening which is observed when compressible mobile phase fluids 
experience large pressure drops in a chromatographic column is a direct result of the 
solute velocity gradients which are thereby induced. Accurate prediction of the 
gradient-induced band broadening requires a knowledge of the equation of state for 
the mobile phase fluid, the dependence of the solute capacity factor on mobile phase 
density and an explicit expression for local plate height. The dependence of solute 
diffusion coefficients in the mobile and stationary phases on mobile phase density must 
also be known. Excluding the possibility of adsorption phenomena, the major 
limitation to accurate prediction of plate height at this time seems to be a lack of 
information on the effect of mobile phase density on solute diffusion coefficients in the 
stationary phase or stationary zone. This limitation notwithstanding, this treatment 
provides the foundation for prediction of the effects of basic operating parameters 
such as particle or tube diameter, column length and mobile phase conditions on 
resolution. As such, it should prove useful for column design and optimization 
procedures in SFC. 
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APPENDIX 

Alternative derivation of the apparent plate height equation 
The basic approach taken here is similar to that used by Giddings et al.’ for the 

effect of pressure drop on plate height in gas chromatography, but with consideration 
of non-ideal behavior of the mobile phase fluid, as well as the effect of mobile phase 
density on solute capacity factors. It is applicable to gas, liquid and supercritical fluid 
chromatography under conditions of constant temperature and constant mass 
flow-rate. 

Let us define a solute zone as a region containing a fixed mass of solute. At 
a constant mobile phase specific mass flow-rate F,, the width w of the solute zone, and 
therefore its velocity, will vary as a result of changes in mobile phase density and solute 
capacity factor. The velocity of the mobile phase u, is inversely proportional to its 
density through the relation 

24 m= Fmlp 

The velocity of the solute is some fraction of the mobile phase velocity and is related to 
the capacity factor k’ by the relation 

24, = u,/(l + k’) 

At any point in the column then 

u, = Fm/(l + k’)p (Al) 

Let us divide the column into increments of variable width w which correspond to the 
widths of a solute zone as it traverses the column. Let At be the average time required 
for a solute molecule to pass through increment j of width wj, so that 

where u,,j is the velocity of the solute in incrementj. During the subsequent and equal 
time period At, the solute traverses increment j + 1 of width Wj+l, and 

Wj+l = (Us,j+ l)At 
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Invoking eqn. Al, 

wj+l/Wj = %,j+l/%,j = C1 + k[i)Pj/[(l + k~+l)Pj+ll 

We now define cj as the contribution to solute zone width which occurs within 
segment j. As the solute zone moves through increment j + 1, the contribution aj to 
solute zone width which occurred in segment j becomes 

aj+l = Oj(Wj+l/Wj) = Uj(1 + k>)pj/[(l + k;+ lbj+ll 

In the absence of a velocity gradient, the variance at the outlet is 

In the presence of a gradient, noting that we can replace Wj+i with the width of the 
solute zone at the outlet, the variance becomes 

2 
aout = C[c+( 1 + Q2pf/(l + &“t)2p:” J 

Letting z equal the distance travelled by the solute band, substituting cr2 = Hz, and 
summing over a column of length L in the limit of infinitesimally small increments, we 
obtain 

L 

2 
aout = 

s 

{(HU + k’)2~2)lK1 + kbd2dutlPz 

0 

The standard deviation of an eluting peak in elution time< is 

7 = ~,“tl~,,,“t = GutU + kb,tYUo,t 

The apparent or measured plate height fi is then 

A = L(z/t# = Lqf”,(l + ~“t)2/(U,2,tt,Z) = 

L 

= M~out~out~J21 ffU + k’12p2dz 
s 
0 

b-42) 

A change in variable from z to p is possible using Darcy’s law; 

u m = I;,/P = -(B”/rl)(dP/dz) = -(B”/l)(GP/Gp).(dp/dz) 

where B” is specific permeability, rl is viscosity and P is pressure. Rearranging, we 
obtain 

dz = - (B op/J’mdW’/&M~ = - (B oI~mPz(~kb (A31 



PLATE HEIGHT THEORY FOR GC. LC AND SFC 21 

where D,(p) is the spatial distribution function for the mobile phase fluidg. 
Substituting for dz in eqn. A2, 

I? = (B”L/F:t,‘)~H(l + k’)‘p2D,(p)dp (A4) 

where the integration limits are from p = pout at z = L to p = Pin at z = 0. 
Also noting that dt is related to the temporal distribution function9 D,(p) by the 

relation 

dt = -(B”/F:)Dt@)dp 

and that the solute retention time tr = (1 + k’)t,, where t, is the time required to elute 
an unretained solute, we obtain 

dt, = -(B’/F;)(l + k’)D,(p)dp 

and 

t, = (B”/F:)j(l + k’Pt(p)dp (A51 

Combining eqns. A4 and A5, 

12 = (LJ’n,/B”)[j~(l + k’)2~2W~)&4/[jU + k’PtWd~12 G-w 

where the integration limits are Pin to pout. Also noting that 

L = jdz = (B”/L)jWNp 

and that pD,(p) = D,(p), making the appropriate substitutions in eqn. A6, we obtain 

fi = <H(l + k’)2p>,/(<l + k’>: . <p>& (A7) 

or in reduced parameters 

t; = fi/d = <h(l + k’)2p>,/(<1 + k’>,2. <p>J W) 

where < > t and c > z represent the temporal and spatial averages, respectively, of the 
enclosed functions, and d is the column diameter (dc) for open tubular columns or the 
particle diameter (d,) for packed columns. 

SYMBOLS 

A 
A, & C, D 
BO 

D,, D,, D,, 

Area 
Constants in plate height equation 
Specific permeability of a packed bed 
Diffusion coefficient of solute, cm2 s-l: in mobile phase; in 
stationary phase; in stationary zone 
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4, dp Diameter: of column; of particle 
4 Stationary phase film thickness 

D&I, D,(p) Density distribution function: temporal; spatial 

se7 % 4 Porosity: interparticle; intraparticle; total 
F, F,, F,,,, Fo Specific mass flow-rate, g cmm2 s-l; specific mass flow-rate: of 

mobile zone; of mobile phase; superficial 
Fk, FeR, FmR, FOR Reduced specific mass flow-rate, cm/s; reduced specific mass 

flow-rate: of mobile zone; of mobile phase; superficial 
Obstruction factor: for longitudinal diffusion; in mobile phase; in 
stationary phase; in stagnant mobile phase 
Ratio of inlet to outlet density 
Local plate height; apparent plate height 
Reduced plate height: local; apparent; estimated apparent assuming 
v is constant; simple estimate of local plate height 
Viscosity; reduced viscosity 
Tortuosity factor for porous particles 
Phase capacity factor; zone capacity factor; k’ or k” 
Phase capacity factor at stated reference conditions 
Packing parameters 
Length of column 
Mass of excluded mobile phase 
Mass flow-rate, g/s 
Pressure; inlet pressure; outlet pressure 
Reduced velocity; reduced excluded velocity 
Density; inlet density; outlet density; reference density 
Reduced density 
Standard deviation of a solute zone: in length units; in time units 
Time 
Retention time: of a solute; of an unretained solute 
Temperature 
Linear velocity: of mobile zone; of mobile phase; superficial; of 
solute 
Volume: total; interparticle; intraparticle 
Volumetric flow-rate, cm3/s 
Ratio of intraparticle volume accessible to solute over interstitial 
void volume 
Fraction of stagnant mobile phase which is accessible to solute 
Ratio of stagnant mobile phase volume to mobile phase volume 
Width of a solute zone 
Axial position in column 
Temporal average of function enclosed in brackets 
Spatial average of function enclosed in brackets 
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